Learning and Applying Artificial Intelligence with
Mobile Robots

Julio César Sandria Reynoso'?2, Mario Morales Garcia2, Arturo Mendoza Rendén?

! Instituto de Ecologfa, A.C., Departamento de Informatica,
Xalapa, Veracruz, 91070, México
sandriaj@ecologia.edu.mx
2 Universidad de Xalapa, Ingenieria en Sistemas de Cémputo Administrativo,
Xalapa, Veracruz, 91190, México

Abstract. Learning artificial intelligence sometimes is a very frustrating task
when you try to understand it with a lot of theory and a little practice. This pa-
per intends to illustrate that learning artificial intelligence could be an attractive
and entertainment task when your try to build robots that show some intelligent
behavior like see, hear, speech, move, and even leamn. We use Lego mobile ro-
bots and Java for learning and applying some techniques from artificial intelli-
gence like neural networks, genetic algorithms, computer vision, speech recog-
nition, and speech synthesis.

1 Introduction

The use of physical robots as a teaching tool has been extended around the world.
With the development of the Lego Mindstorms Robotics Invention System, some uni-
versities use them for educational purposes. The Robotics Academy in the Camegie
Mellon University (www.rec.ri.cmu.edu/education) offers a complete teaching pack-
age for children, to introduce them to technology, hardware, electronic control, com-
puter programming and mechanics. It has been used to instill engineering skills, sci-
entific interest, computer acquisition, general ideas and creativity among students [6];
also, applying Piaget’s theories of cognitive development, to help students to under-
stand concepts about complex dynamic systems, like how global behavior can emerge
from local dynamics [8].

In the artificial intelligence arena, Lego based robots have been used for teaching
neural networks [4] and for building low cost robotics laboratories for teaching artifi-
cial intelligence [S].

In this paper we use Lego mobile robots for teaching/learning some artificial intel-
ligence themes in an Artificial Intelligence Course. Based on Nilsson’s book [9],
which covers these themes with software agents, we begin to work a neural network,
a genetic algorithm and a computer vision algorithm with physical agents — our mo-
bile robots.

With the idea of using only one programming language, available to Lego robots,
we use Java. This way, we can build intelligent Lego robots with Java, as it provides
APIs for programming systems that can see, hear, speak [7], and even learn [12, 13].

© A. Gelbukh, S. Torres, I. Lopez (Eds.)
Advances in Artificial Intelligence
Research in Computing Science 20, 2006, pp. 191-198

192 Sandria Reynoso J., Morales Garcia M., Mendoza Rendén A.

We use the Lego Mindstorms Robotics Invention System 2.0 for building the Lego
mobile robots; 1eJOS 2.1.0, a little Java operating system for downloading and run-
ning Java programs inside the robots; Java 2 for compiling the Java programs under
LeJOS, and some APIs for computer vision and speech recognition.

1.1 Lego Mobile Robots

The Lego Mindstorms Robotics Invention System (RIS) is a kit for building and pro-
gramming Lego robots. It has 718 Lego bricks including two motors, two touch sen-
sors, one light sensor, an infrared tower, and a robot brain called the RCX.

The RCX is a large brick that contains a microcontroller and an infrared port. You
can attach the kit's two motors (as well as a third motor) and three sensors by snap-
ping wire bricks on the RCX. The infrared port allows the RCX to communicate with
your desktop computer through the infrared tower.

In this work, we use a Roverbot as it is constructed in the Lego Mindstorms Con-
structopedia, the guide for constructing Lego robots.

1.2 Java Technology

We use Java 2 Technology to program all algorithms we show, using own code and
predefined packages and Java APIs as shown in Table 1.

Table 1. Java Technology used with Lego robots

Java Technology Mean and use

J2SDK Java 2 Software Development Kit to compile and run Java programs
LeJOS Lego Java Operating System to run Java programs inside the RCX
LMbpn A Lego Mindstorms Backpropagation Neural Network (own)

LMsga A Lego Mindstorms Simple Genetic Algorithm (own)

JFM Java Media Framework for Computer Vision

JSAPI & Sphinx Java Specch API and Sphinx for Speech Recognition
JSAPI & Sphinx Java Speech API and Sphinx for Speech Synthesis

1.3 LeJOS

LeJOS is a small Java-based operating system for the Lego Mindstorms RCX. Be-
cause the RCX contains just 32 KB of RAM, only a small subset of the Java Virtual
Machine and APIs can be implemented on the RCX. LeJOS can be downloaded from
lejos.sourcefoge.net. For setting up a LeJOS installation refer to the LeJOS documen-
tation or Ferrari et. al. [2].

Learning and Applying Artificial Intelligence with Mobile Robots 193

2 Artificial Intelligence applications

2.1 Neural Network: The Backpropagation algorithm

For the neural network example, the task was to learn and apply the backpropagation
algorithm as it is described by Rich and Knight [11]. We had to model a backpropaga-
tion network for our mobile robot. The robot has three inputs (two touch sensors and
one light sensor) and two outputs (two motors) as shown in Fig. 1.a. So, we can use a
three layer backpropagation network as shown in Fig. 1.b.

Sensor 1 Sensor 2 Sensor 3 Sensor | Sensor 2 jcnsor 3

output layer
Motor A Motor C Motor A Motor C
a) The roverbot to model b) The backpropagation network

Fig. 1. The robot input/outputs and its backpropagation network

The use of a three layered network and three units in the hidden layer was just an
arbitrary decision influenced by teaching purposes.

To define input-output vector pairs for using in the backpropagation network, from
the robot input-output (sensor-motor), we had to identify what was going to learn the
robot. We defined four basic behavior rules:

1. Forward: if sensor 1 is off, and sensor 2 is over white floor, and sensor 3 is off,
then Motor A and Motor C go forward (the robot goes forward).

2. Turn right: if sensor 1 is on, then Motor A goes forward, and Motor C goes back-
ward (the robot turns right).

3. Turn left: if sensor 3 is on, then Motor A goes backward, and Motor C goes for-
ward (the robot turns left).

4. Backward: if sensor 2 is over black floor, then Motor A and Motor C go backward

(the robot goes backward).

We translated these rules to training examples for the backpropagation network as
shown in Table 2.

194 Sandria Reynoso J., Morales Garcia M., Mendoza Rendon A.

Table 2. The rules to learn as training examples

Training examples

Relle Sensor | Sensor 2 Sensor 3 Motor A Motor C
Forward 0 0 0 1 1
Tumn right 1 0 0 1 0
Turn left 0 0 1 0 1
Backward 0 1 0 0 0

R ___T_J
N
Input vectors Output vectors

The input-output vector pairs are the examples we used to train the backpropaga-
tion network. This way, our mobile robot learnt to move forward, turn right, turn left
and backward, based in its sensor states. Additionally, we did not define a rule when
both, sensor 1 and sensor 2 were both on, but the backpropagation network gave the
robot an emergent behavior for such case.

For the development process we used a Java-based graphic interface (Fig. 2),
where it is possible to train and test the neural network. This way, at the final devel-
opment cycle, we trained the backpropagation network, and found that it learnt the
rules in 500 epochs, that required less than 1 second in a Windows XP system with
256 MB RAM, and a 1.8 GHz processor.

¢ LM Backpropagalion Network

29 (i J oo (15) (5 G)0 (1ea)
Csersorr) (Coensor2] (Csensar Coemsort) [(senor2] [[Senser3]
ot A e 0] (] [o_] [e]
00091535 00128679 -0.000000 00091535 00120679 -0000000
ndden |o7e7 osu [1000 | Nden {0788 | 0835 1000 |
0016305 -0023113 0016305 0023113
outpd o1 | [02%0 oupxd {0488 | (025 |
[waoa Ml ot Abnckoward) | [Mo Chackwar) |
bpn Trained bpn Tested
a) BPN training phase b) BPN testing phase

Fig. 2. A Java-based graphic interface for the development process.

The program code was compiled with the LeJOS compiler (Lejosc) and
downloaded to the RCX with the LeJOS loader (1ejos), as shown in [12]. The pro-
gram ran well in the RCX, but requires about 5 minutes to train 500 epochs. It is bet-
ter to train the network in a desktop computer and then download the program to the
RCX.

2.2 Genetic Algorithm
In order to give the mobile robot an artificial intelligence program that could by itself

choose the correct way to response to the signals being received by its sensors an Ar-
tificial Neural Network application was created, but of course the program needs to be

Learning and Applying Artificial Intelligence with Mobile Robots 195

trained first, which poses a slight computational problem, the RCX by itself takes a
considerable amount of time to process the information needed to be correctly trained,
in this case when using the backpropagation algorithm took about 500 epochs to get
the responses right, which translates to 5 minutes of processing time at the RCX. And,
to learn an obvious emergent behavior — not defined by given rules in Table 2 — like
both sensor 1 on and sensor 3 on, it took to the backpropagation network more than
5000 epochs to learn move backward.

The way chosen to tackle this problem was to optimize the backpropagation algo-
rithm with the use of a simple genetic algorithm as described by Goldberg [3] im-
mersed in the error minimization function, and get all the processing done on a desk-
top computer. This way, what was tried to accomplish was to get the correct weight
values for each of the layers on the neural network, and then transfer those values to
the neural network on the RCX, and so completing the training of the network without
having to wait for the brick to get the entire math done.

The first thing done to get the genetic algorithm working was to create some useful
functions that would be needed along the whole process more than one time. These
were the functions to convert from real numbers to binary ones; the function to obtain
the current values if the population when applied to the mathematical evaluation func-
tion, the roulette count for each of the population values and of course the function to
convert back the binary numbers to real ones.

The next functions to get done where the most important ones, the coupling func-
tion and the mutation function. For the former one a few randomization operations
were needed, especially when choosing the couples to reproduce and the point of in-
sertion of each portion of the binary value that would finally create the new values.
The latter one uses also a randomization function, but it’s used to create a probability
operation to choose if any of the binary values should mutate when passing to the next
generation which would represent a change of one of its binary numbers.

After getting all these functions done the only thing needed is to create an encapsu-
lation for them, that is a program that uses the functions in the correct order and that
using recursive programming can evolve the evaluation of the mathematical function
in order to get the correct values of the weights by passing the values obtained after

the mutation and coupling functions back to the genetic algorithm so it can start proc-
essing them all over again.

2.3 The Computer Vision Algorithm

One of the biggest issues in artificial intelligence is to simulate the way the human vi-
sion works, the computational power needed to correctly interpret the images cap-
tured in real time represents a huge obstacle to the development of this area. DeSouza
and Kak survey the developments of robot vision navigation since 1980s [1]. Here,
we applied just only one algorithm, mainly trying to discern different objects viewed
across a camera. The whole point of it was to get the mobile robot to recognize and
differentiate between two different objects and advance towards them in order to grab
the one the user has ordered to be captured. This was planned to be done by using
edge detection and remote controlling the robot.

196 Sandria Reynoso J., Morales Garcia M., Mendoza Rendon A.

Before even attempting to program anything the correct tools must be present, and
one of these tools was the Java Media Framework [7] which presents libraries and
methods to properly use the images captured by a camera, in this case a small web-
cam attached to the robot’s body (Fig. 3.a). Other tools are the LeJOS Vision classes
in vision.jar and remote control classes rcxcomm. jar and pcrcxcomm. jar
to remotely control the Lego robot through the infrared tower, manually using buttons
in an own graphic interface (Fig. 3.b) or automatically using commands in the vision
program.

£ Regmote ROX control

e
. AN

]

a) A small webcam attached to the robot’s b) The Java-based graphic interface to con-
body trol the robot

Fig. 3. A small webcam for the robot vision

For this program one of the most basic edge recognition algorithms was used —the
Sobel algorithm [10]- which uses convolution masks to determine the difference be-
tween pixels that are next to each other and find the edges on an image.

The biggest issue present when programming this application was to manipulate
correctly the images by it’s pixels. Therefore a function that can convert an image to
an array of pixels on integer values it’s needed. Fortunately Java provides a very easy
to use method on its image libraries that is called PixelGrabber and it does precisely
the work that is needed to be done. With the pixels already on an integer array it is
only needed then to translate the Sobel algorithm into a function which at the end re-
turns an array of pixels where the edges found get a different color. Another useful
Java method can render an image out of the pixel array finally showing on screen the
original image with the edges marked.

In this case we used two different objects to work with, a cylinder and a sphere.
After getting the Sobel function working the next thing needed is to create a function
that searches for the edge pixels and checks if they all make a geometrical figure a
rectangle or a circle. The search is done by searching for pixels next to each other. To
find the rectangle if two parallel lines are found connected to two perpendicular ones
the image is recognized. For the sphere the pixels need to be connected in one of four
ways - to the left and below, right and below, left and above and right and above — so
the circle is drawn.

After that the work becomes simpler, a small program that lets the user choose be-
tween the object to look for needs to be done and using the Java Media Framework

Learning and Applying Artificial Intelligence with Mobile Robots 197

the image being captured it’s shown to the user so he can check how the mobile robot
looks for the geometrical figure on it.

2.4 Speech Recognition and Synthesis

In order to “talk” with our mobile robot a chat interface was designed to give orders
to the robot and to receive response from it (Fig. 4.a). This way, we can see what the

robot see (Fig. 4.b), and tell what to do, €.g., move forward, backward, tumn right, turn
left, move camera up or down, and so on.

Control Remoto RCX

flo Image Tools Holp
orward .. 0k Move Robot (0.

Control Remoto RCX

en . ok —
i
L] s R |

forward 10

If 00021343

a) A remote control chat interface b) The robot vision

Fig. 4. The remote control interface

Trying to give simple voice orders to the robot and receive responses from it in the
chat interface, we used Sphinx 4, a Java Framework for speech recognition [14]. For
the speech recognition we used a little grammar like is required by Sphinx:

grammar move;

public <greet> = (go | turn | camera) (up | down |
left | right | stop | backward | forward);

3 Conclusion

Leamning artificial intelligence in a one semester course using mobile robots is a more
different and entertainment task than the traditional way — with a lot of theory and
some programs. At the beginning students become disconcerted when the teacher tells
them they have to learn and apply some artificial intelligence algorithms in a little
Lego toy. But, it becomes very interesting to understand first how to program the
Lego robot, and second, trying to program some algorithms, using only the Java lan-
guage.

198 Sandria Reynoso J., Morales Garcia M., Mendoza Rendon A.

References

7.

8.

9.

. DeSouza, G.N., Kak, A.C.: Vision for Mobile Robot Navigation: A Survey. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (2002) 24:2, 237-267.

. Ferrari, G., Gombos, A., Hilmer, S., Stuber, J., Porter, M., Waldinger, J. Laverde, D.: Pro-

gramming Lego Mindstorms with Java. Syngress Publishing, Rockland MA (2002).

. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Leaming. Addi-

son-Wesley (1989).

. Imberman, S.P.: Theaching Neural Networks Using Lego-Handyboard Robots in an Artifi-

cial Intelligence Course. SIGCSE Technical Symposium on Computer Education (2003).

. Kumar, D., Meeden, L.: A Robot Laboratory for Teaching Artificial Intelligence Resource

Kit. Proceedings of the Twenty-ninth SIGCSE Technical Symposium on Computer Science
Education, Daniel Joyce (ed.), ACM Press (1998).

Law, K.W., Tan, HK., Erwin, B.T., Petrovic, P.: Creative Learning in School with Lego
Programmable Robotics Products. 29" ASEE/IEEE Frontiers in Education Conference
(1999).

Meloan, S.: Futurama: Using Java Technology to Build Robots that can See, Hear, Speak,
and Move. Sun Microsystems Inc, July (2003).

Miglino, O., Lund, H.H,, Cardaci, M.: Robotics as an Educational Tool. Journal of Interac-
tive Learning Research (1999) 10:1, 25-48.

Nilsson, N.J.: Inteligencia Artificial. Una nueva sintesis. McGraw-Hill, Espaiia (2001).

10.Parajes, G., De la Cruz, J.M.: Visién por Computador, imagenes digitales y aplicaciones.

Alfaomega-RaMa, México (2002).

11.Rich, E., Knight, K.: Inteligencia Artificial. 2da ed. McGraw-Hill, Espafia (1994).
12. Sandria Reynoso, J.C.: A Neural Network for Java Lego Robots. JavaWorld. May 16

(2005).

13.van Dam, B.: Simple Neural Network as robot brain. generation5, www.generationS.org

(1999).

14.Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., Wolf, P., Woelfer, J.:

Sphinx-4: A Flexible Open Source Framework for Speech Recognition. Sun Microsystems

Inc. (2004).

